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R  correlation coefficient 

Rearth  spherical radius of the Earth 

Ri  range to reflecting surface at time i 

Rcorr  corrected altimetric range 

Robs  observed altimetric range 

Robs'  observed slant range 
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ΔR range error 

rNIR near infrared band reflectance 

rRed red band reflectance 

ΔRdry dry tropospheric propagation delay 

ΔRiono ionospheric propagation delay 

ΔRssb sea state bias 

ΔRwet wet tropospheric propagation delay 

Sd1 standard deviation for all power differences between adjacent gates 

Sd2 standard deviation for all power differences for a separation of 2 gates 

Sr(t) radar point target response 

Th Threshold Retracker threshold level at q% 

W waveform width (OCOG and Threshold Retracker) 

β1 thermal noise of β-parameter retracking 

β2 return signal amplitude of β-parameter retracking 

β3 midpoint of leading-edge ramp of β-parameter retracking 

β4 waveform rise time of β-parameter retracking 

β5 slope of trailing edge of β-parameter retracking 

δsi along track distance between ti-1 and ti 

φ latitude 

λ longitude 

satellite altitude along track variation 

γ function of the antennae beam width 

ξ waveform trailing edge slope for the Brown–Hayne retracking model 

σc waveform rise time for the Brown–Hayne retracking model 

σ0 backscatter coefficient (sigma0) 

σs slope of the waveform leading edge for the Brown–Hayne retracking model 

τ waveform epoch/time delay for the Brown–Hayne retracking model 
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ABSTRACT 

To manage the pressure that population growth, human impact and climate change is having 

on the allocation of, and access to, water there is an increasing need to monitor the world’s 

water resources, independent of infrastructure and inter-government policies. Traditionally 

the realm of the hydrologist, this task has relied on the deployment of in-situ gauges and 

instruments. Recent focus has been on the capabilities of satellite-based technologies to 

augment the existing hydrology in-situ network with the aim of replacing it with a global 

water level monitoring tool for inland rivers, lakes and wetlands. 

This research has focussed on the satellite altimetry coverage of the middle Fly River 

floodplain as well as Lake Murray—both located in the Western Province of Papua New 

Guinea. The Fly River floodplain is a mine-impacted environment and monitoring of water 

level change through the various floodplain and wetland entities is required into the future. 

More than for other similar environments throughout the world there will become an 

increasing need to support Fly River local communities with information regarding predicted 

changes to inundation that may have impacts on their communities and subsistence 

livelihood. 

The current state-of-the-art satellite altimetry analysis methodologies over heterogeneous 

inland waters do not meet the accuracy and reliability requirements for water surface 

measurement. This is particularly relevant for the relatively small river and lake systems that 

contribute to a typical complex floodplain or wetland system. Methodologies developed in 

this study enable routine, accurate and reliable extraction of water surface elevations from 

nadir-looking pulse-limited radar altimeters over heterogeneous inland waters. This is 

achieved by deconstructing the shape and form of the recorded waveform and correlating 

that form against external inputs so that the environmental factors that have affected the 

shape and form of the waveform are understood and can be addressed. The external inputs 

comprise a range of supporting data, including information derived from satellite imagery 

as well as in-situ water level observations. A process of waveform footprint classification is 

developed with assessment of footprint inundation extent based on image analysis from both 

multi-spectral and synthetic aperture radar (SAR) imagery. The methodology is extended to 

include a full definition of the landform cover type as well as prediction capabilities for off-

nadir calm water detection. 

A significant advancement over conventional processes is that waveforms, and the 

associated water surface elevations, are assessed based on an analysis of the waveform and 
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adjacent waveforms as well as the nature of the altimetry footprint rather than solely on 

statistical agreement of the derived water surface elevation with that derived from adjacent 

waveforms. This facilitates the retention of water level estimates over relatively small water 

bodies, where multiple, statistically consistent, estimates would not be practical. The 

processes developed in this research offer a methodology for the extraction of reliable water 

surface estimates, in both a temporal and spatial context, over heterogeneous inland waters. 

An optimised adaptive threshold retracker, the Waveform Adaptive Threshold Retracker, is 

developed as part of this study with methodology and workflow detailed in the thesis. 

Methods for the accurate identification of waveforms impacted by hooking and other sources 

of contamination are developed, along with tools for the rectification of impacts and 

estimation of likely contamination magnitude. 

Optimised waveform retracking using the adaptive retracking methodology and workflow is 

validated at Envisat Radar Altimeter 2 (RA-2) and Satellite with Argos and AltiKa 

(SARAL/AltiKa) crossings of the Fly River and achieved by comparison of the altimetric 

time series with in-situ gauge data. Validation is also undertaken for floodplain sites where 

verified virtual in-situ gauges have been established for validation of both Envisat RA-2 and 

SARAL/AltiKa-derived elevations. This comparison has been undertaken for the 10 years 

of Envisat RA-2 data acquisitions and the pre-drifting phase cycles of SARAL/AltiKa data. 

Elevation profiles from Envisat RA-2, SARAL/AltiKa and Cryosat-2 SAR Interferometer 

Radar Altimeter (SIRAL) altimeters have been derived across both the Fly River floodplain 

and Lake Murray and used to assess the proposed retracking methodologies for the 

derivation of floodplain gradients and differential elevations between various floodplain 

water bodies. 

The methodologies developed offer potential for the reprocessing of a significant archive of 

data from nadir-looking pulse-limited radar altimeters as well as supporting analyses of data 

from currently operational altimeters into the future. The work undertaken in this study has 

facilitated tangible improvements in the quality and quantity of water level estimates across 

complex inland water environments. 




